Investigations of physical properties of the new EuMnCu2P2 compound

Authors

  • L. Bahmad Mohammed V University
  • A. Jabar Hassan II University of Casablanca
  • S. Idrissi Mohammed V University

DOI:

https://doi.org/10.31349/RevMexFis.72.010502

Keywords:

Tetragonal EuMnCu2P2 material; DFT method; seebeck coefficient; electron energy loss; thermoelectric properties

Abstract

This work explored the EuMnCu2P2 compound, examining its diverse physical properties, including structural, electronic, optical, and thermoelectric properties. The investigation used density functional theory (DFT) implemented in the Wien2k package. The GGA-PBE approach was employed to determine the exchange-correlation potential, with consideration for spin-orbit coupling (SOC). The results on structural properties of the EuMnCu2P2 compound indicate that the stable ground state of the compound is the ferromagnetic (FM) phase. Additionally, our electronic findings indicate the metallic behavior of the EuMnCu2P2 compound. We have examined several key parameters in assessing optical properties, such as electron energy loss, absorption coefficient, real and imaginary dielectric tensors and optical conductivity. These properties provide valuable insights into how the material interacts with light and electromagnetic radiation. A significant finding in this study is that the compound exhibits exceptional absorption capabilities within the low and medium ultraviolet (UV) spectrums. This strong absorption in the UV region can be attributed to the material's unique electronic structure and response to the incident light. The excellent absorption properties make the compound a potential candidate for various applications in optoelectronics, photonic devices, and even solar energy conversion, where efficient utilization of UV light is crucial. Furthermore, we investigated the thermoelectric properties. Our findings reveal that the Seebeck coefficient decreases with increasing temperature, irrespective of the spin channel. The results suggest that the material displays an n-type behavior, as indicated by the negative values of the Seebeck coefficient. To gain a comprehensive understanding of the thermoelectric behavior of the alloy for practical applications.

References

C. M. Varma, Rev. Mod. Phys. 48 (1976) 219

P. Coleman and A. Schofield, Nature 433 (2005) 226

S. Sachdev, Quantum Criticality, Cambridge Univ. (Press, New York, 1999)

J. M. Tranquada et al., Nature 429 (2004) 531

P. Gegenwart, Q. Si and F. Steglich, Nature Physics 4 (2008) 186

Z. Fisk et al., Science 239 (1988) 33

D.C. Johnston, Adv. Phys. 59 (2010) 803

D.J. Scalapino, Rev. Mod. Phys. 84 (2012) 1383

G.R. Stewart, Rev. Mod. Phys. 83 (2011) 1589

A. Dahal et al., Phys. Rev. B 99 (2019) 085135

H. Hosono and K. Kuroki, Physica C 514 (2015) 399

R.M. Fernandes, A. V. Chubukov, and J. Schmalian, Nat. Phys. 10 (2014) 97

E. Dagotto, Rev. Mod. Phys. 85 (2013) 849

J. Ballinger, L. E. Wenger, Y. K. Vohra, and A. S. Sefat, Journal of Applied Physics 111 (2012) 07E106

R. Mahesh, T. Gnanapongothai, B. Rameshe, U. Reka, and B. Palanivel, Chemistry, Materials Science, (2014)

M. Bishop, W. Uhoya, G. Tsoi, Y. Vohra, A. Sefat, and B. Sales, Journal of Physics. Condensed Matter: An Institute of Physics Journal, 22 (2010) 425701

X. Tan et al., J. Am. Chem. Soc. 138 (2016) 2724

K. Kovnir, W. M. Reiff, A. P. Menushenkov, A. A. Yaroslavtsev, R. V. Chernikov, and M. Shatruk, Chem. Mater. 23 (2011) 3021

C. Huhnt, W. Schlabitz, A. Wurth, A. Mewis, and M. Reehuis, Phys. Rev. B, 56 (1997) 13796

W. H. Zachariasen, Acta Crystallogr. 2 (1949) 94

K. Remschnig, T. Le Bihan, H. Noel, P. Rogl, J. Solid State Chem. 97 (1992) 391

W. Rieger, H. Nowotny, F. Benesovsky, Monatsh. Chem. 95 (1964) 1502

O. I. Bodak, E. I. Gladyshevskii, Sov. Phys. Crystallogr. 14 (1970) 859

O. I. Bodak et al., Dopov. Akad. Nauk Ukr. RSR, Ser. B 2 (1985) 36

T. Harmening, L. van Wullen, H. Eckert, U. Ch. Rodewald, R. Pottgen, Z. Anorg. Allg. Chem. 636 (2010) 972

A. T. Aldred, Trans. Met. Soc. AIME 224 (1962) 1082

T. H. Geballe, B. T. Matthias, V. B. Compton, E. Corenzwit, G. W. Hull, L. D. Longinotti, Phys. Rev. 137 (1965) A119

E. Hovestreydt, N. Engel, K. Klepp, B. Chabot, E. Parthe, J. Less-Common Met. 85 (1982) 247

T. Harmening, H. Eckert, C. M. Fehse, C. P. Sebastian, R. Pottgen, J. Solid State Chem. 184 (2011) 3303

M. Meot-Meyer, G. Venturini, B. Malaman, J. Steinmetz, B. Roques, Mater. Res. Bull. 19 (1984) 1181

R. Pottgen, A. Lang, R.-D. Hoffmann, B. Kunnen, G. Kotzyba, R. Mullmann, B. D. Mosel, C. Rosenhahn, Z. Kristallogr. 214 (1999) 143

Ya. V. Galadzhun, R.-D. Hoffmann, R. Pottgen, M. Adam, J. Solid State Chem. 148 (1999) 425

B. Heying, J. Kosters, R.-D. Hoffmann, L. Heletta, R. Pottgen, Z. Naturforsch, 72b (2017) 753

A. Jabar, S. Idrissi, L. Bahmad, Solid State Communications, 381 (2024) 115446

S. Idrissi, A. Jabar, L. Bahmad, International Journal of Quantum Chemistry, 124 (2024) e27341

H. Labrim, Y. Selmani, S. Ziti, S. Idrissi, R. El Bouayadi, D. Zejli, L. Bahmad, Solid State Communications, 363 (2023) 115105

S. Idrissi, O. Mounkachi, L. Bahmad, A. Benyoussef, Journal of the Korean Ceramic Society, 60 (2023) 424

S. Idrissi, H. Labrim, L. Bahmad, A. Benyoussef, Ferroelectrics, 606 (2023) 113

S. Idrissi, Integrated Ferroelectrics, 225 (2022) 334

P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Austria (2001)

O. K. Andersen, Phys. Rev. B 42 (1975) 3060

J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865

J. Camargo-Martınez and R. Baquero Parra, Rev. Mex. Fi., 59 (2012)

W. Song, E. Zhao, J. Meng, and Z. Wu, The Journal of Chemical Physics, 130 (2009) 114707

G. K. H. Madsen and D. J. Singh, Computer Physics Communications, 175 (2006) 67

V. G. Tyuterev and N. Vast, Computational Materials Science, 38 (2006) 350

H. J. Xiang and D. J. Singh, Phys. Rev. B, 76 (2007) 195111

S. Yousuf and D. C. Gupta, Materials Chemistry and Physics, 192 (2017) 33

Downloads

Published

2026-01-01

How to Cite

[1]
Bahmad, A. Jabar, and S. Idrissi, “Investigations of physical properties of the new EuMnCu2P2 compound”, Rev. Mex. Fís., vol. 72, no. 1 Jan-Feb, pp. 010502 1–, Jan. 2026.