Coherent states of a free particle from the coherent states of the harmonic oscillator
DOI:
https://doi.org/10.31349/RevMexFis.72.010702Keywords:
Coherent sates; free particle; uncertainty relationsAbstract
We construct the coherent states of a free particle by implementing a coordinate transformation in the extended configuration space, which establishes a correspondence between the solutions of the Schrödinger equation for a harmonic oscillator and those for a free particle. Using this framework, we derive analytical expressions for the coherent states of a free particle, avoiding the complexities of non-normalizable fiducial states, integrals of motion, or group-theoretic approaches. Our method provides a systematic way to characterize these states at any instant while ensuring that they satisfy the Robertson-Schrödinger uncertainty relation.
References
G.F. Torres del Castillo, Relating the free particle with the harmonic oscillator, Rev. Mex. Fis. 71 (2025) (to appear)
G.F. Torres del Castillo, Sharing symmetries, Rev. Mex. Fis. 71 (2025) (to appear)
J.B. Geloun, J. Hnybida and J. Klauder, Coherent states for continuous spectrum operators with non-normalizable fiducial states, J. Phys. A: Math. Theor. 45 (2012) 085301. https://doi.org/10.1088/1751-8113/45/8/085301
I.A. Malkin, V.I. Man’ko, Dinamicheskie Simmetrii i Kogerentnye Sostoyaniya Kvantovykh Sistem (Dynamical Symmetries and Coherent States of Quantum Systems), (Nauka, Moscow, 1979)
V.V. Dodonov and V. I. Man’ko, Theory of Nonclassical States of Light, (Taylor & Francis, London, 2003)
A.M. Perelomov, Coherent states for arbitrary Lie group, Commun. Math. Phys. 26 (1972) 222-36. https://doi.org/10.1007/BF01645091
A.M. Perelomov, Generalized Coherent States and Their Applications, (Springer, Berlin, 1986). https://doi.org/10.1007/978-3-642-61629-7
E. Schrödinger, Ü bergang von der Mikrozur Makromechanik, Naturwissenschaften 14 (1926) 664-666
R.J. Glauber, The Quantum Theory of Optical Coherence, Phys. Rev. 130 (1963) 2529. https://doi.org/10.1103/PhysRev.130.2529
J.P. Gazeau, Coherent States in Quantum Physics, (Wiley, Weinheim, 2009)
J.R. Klauder and B.S. Skagerstam, Coherent States: Applications in Physics and Mathematical Physics, (World Scientific, Singapore, 1985)
M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information, (Cambridge University Press, Cambridge, 2010). https://doi.org/10.1017/CBO9780511976667
F. Lizzi, A. Pinzul, A. Stern and C. Xu, Asymptotic commutativity of quantized spaces: The case of CPp,q, Phys. Rev. D 102 (2020) 065012. https://doi.org/10.1103/PhysRevD.102.065012
D. Oriti, R. Pereira and L. Sindoni, Coherent states in quantum gravity: a construction based on the flux representation of loop quantum gravity, J. Phys. A: Math. Theor. 45, 244004 (2012). https://doi.org/10.1088/1751-8113/45/24/244004
V.G. Bagrov, D.M. Gitman, and A.S. Pereira, Coherent and semiclassical states of a free particle, Phys. Usp. 57 (2014) 891. https://doi.org/10.3367/UFNe.0184.201409c.0961
M. Maamache, A. Khatir, H. Lakehal and J.R. Choi, Analyzing generalized coherent states for a free particle, Sci. Rep. 6 (2016) 30538. https://doi.org/10.1038/srep30538
H.R. Lewis and W.B. Riesenfeld, An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field, J. Math. Phys. 10 (1969) 1458. https://doi.org/10.1063/1.1664991
C. Cohen-Tannoudji, B. Diu B and F. Laloe, Quantum Mechanics Vol. 1, (Wiley, New York, 1978)
L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995). https://doi.org/10.1017/CBO9781139644105
W. Berej and P. Rozmej, A phase in a coherent-state wavefunction - is it always irrelevant?, Eur. J. Phys. 20 (1999) L25. https://doi.org/10.1088/0143-0807/20/3/007
L.I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968)
H.P. Robertson, The Uncertainty Principle, Phys. Rev. 34 (1929) 163-164. https://doi.org/10.1103/PhysRev.34.163
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 J. Berra Montiel

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
