Synthesis, differential thermal analysis, and crystal structure of the quaternary chalcogenide compound Cu2FeGeTe4

Authors

  • G. E. Delgado Facultad de Ciencias, Universidad De Los Andes https://orcid.org/0000-0003-3970-2387
  • E. Quintero Facultad de Ciencias, Universidad de Los Andes
  • P. Delgado-Niño Facultad de Ingeniería Industrial, Universidad Distrital Francisco José de Caldas
  • R. Guillén-Guillén Departamento General de Ciencias, Universidad Continental
  • G. Márquez Instituto de Energías Renovables, Universidad Tecnológica del Perú

DOI:

https://doi.org/10.31349/RevMexFis.72.010503

Keywords:

Chalcogenide, Chemical Synthesis, Thermal analysis, Powder X-ray diffraction, Crystal structure, Rietveld method, Bond valence sum

Abstract

This study reports on the quaternary diamond-like semiconductor copper iron germanium tellurium, Cu2FeGeTe4. The material was synthesized using the melt and annealing technique by directly reacting the elements. The thermal behavior of the Cu2FeGeTe4 compound was investigated using thermogravimetric analysis. The Rietveld refinement method characterized the crystal structure through X-ray powder diffraction. The powder diffraction pattern revealed that the principal phase, Cu2FeGeTe4, constituted 85.4%, while the secondary phase, FeTe2, accounted for 14.6%. The quaternary chalcogenide compound Cu2FeGeTe4 belongs to the I2-II-IV-VI4 system and crystallizes in the stannite structure within the non-centrosymmetric tetragonal space group I-42m (Nº 121), Z= 2, with unit cell parameters a= 5.9293(8) Å, c= 11.9239(8) Å, V= 419.20(2) Å3. Its structure consists of a three-dimensional close-packed arrangement of slightly distorted CuTe4, FeTe4, and GeTe4 tetrahedra, interconnected through shared faces and corners. The chemical structure was verified through Bond Valence Sum (BVS) calculations

References

E. Parthé, Wurtzite and Sphalerite Structures, in Intermetallic Compounds, edited by J. H. Westbrook and R. L. Fleischer, Vol. 1 (John Wiley and Sons, Chichester, 1995).

L. Pauling, The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51 (1929) 1010-1026. https://doi.org/10.1021/ja01379a006.

P. Valencia-Gálvez, P. Barahona, A. Galdámez, and S. Moris, Cu2Zn(Sn1-xSix)Se4: Structural characterization, vibrational and physical properties of CZTSe-derivatives. Inorganics, 11 (2023) 7. https://doi.org/10.3390/inorganics11010007.

T. Zhu, et al., I2-II-IV-VI4 (I=Cu, Ag; II= Sr, Ba; IV= Ge, Sn; VI= S, Se): Chalcogenides for thin-film photovoltaics. Chem. Mater. 29 (2017) 7868-7879. https://doi.org/10.1021/acs.chemmater.7b02638.

I.V. Bodnar et. al., Growing crystals and studying structure and electronic properties of Cu2ZnGe(Se)4 compositions. Heliyon, 9 (2023) e22533. https://doi.org/10.1016/j.heliyon.2023.e22533.

H. Chen, W.B. Wei, H. Lin, and X.T. Wu, Transition-metal-based chalcogenides: A rich source of infrared nonlinear optical materials. Coord. Chem. Rev. 448 (2021) 214154. https://doi.org/10.1016/j.ccr.2021.214154.

A. Hong, Y. Tang, Y. Tang, and J. Liu, High-throughput screening of quaternary compounds and new insights for excellent thermoelectric performance. J. Phys. Chem. C, 125 (2021) 24796-24804. https://doi.org/10.1021/acs.jpcc.1c06843.

S.R. Hall, J.T. Szymanski, and J.M. Stewart, Kesterite, Cu2(Zn,Fe)SnS4, and Stannite, Cu2(Fe,Zn)SnS4, structurally similar but distinct mineral. Can. Mineral. 16 (1978) 131-137. https://rruff.geo.arizona.edu/doclib/cm/vol16/CM16_131.pdf.

E. Parthé, K. Yvon, and R.H. Deitch, The crystal structure of Cu2CdGeS4 and other quaternary normal tetrahedral structure compounds. Acta Cryst. B25 (1969) 1164-1174. https://doi.org/10.1107/S0567740869003670.

C.A. Joubert-Bettan, R. Lachenal, E.F. Bertaut, and E. Parthé, The crystal structures of Na2ZnSiO4, Na2ZnGeO4, and Na2MgGeO4. J. Solid State Chem. 1 (1969) 1-5. https://doi.org/10.1016/0022-4596(69)90001-2.

C.D. Brunetta, W.C. Minsterman, C.H. Lake, and J.A. Aitken, Cation ordering and physicochemical characterization of the quaternary diamond-like semiconductor Ag2CdGeS4. J. Solid State Chem. 187 (2012) 77-85. https://doi.org/10.1016/j.jssc.2011.12.032.

O.V. Parasyuk, L.V. Piskach, I.D. Olekseyuk, and V.I. Pekhnyo, The quasi-ternary system Ag2S-CdS-GeS2 and the crystal structure of Ag2CdGeS4. J. Alloys Compd. 397 (2005) 95-98. https://doi.org/10.1016/j.jallcom.2004.12.043.

M. Quintero et. al., Crystallographic and magnetic properties of Cu2FeGeSe4 and Cu2FeGeTe4 compounds. phys. stat. sol. (b), 209 (1998) 135-143. https://doi.org/10.1002/(SICI)1521-3951(199809)209:1%3C135::AID-PSSB135%3E3.0.CO;2-W.

M. Quintero et. al., Crystallographic properties of I2-Fe-IV-VI4 magnetic semiconductor compounds. Mater. Res. Bull. 34 (1999) 2263-2270. https://doi.org/10.1016/S0025-5408(00)00166-5.

G.E. Delgado, E. Quintero, R. Tovar, P. Grima, and M. Quintero, Synthesis and crystal structure of the quaternary compound AgFe2GaTe4. J. Alloys Comp. 613 (2014) 143-145. https://doi.org/10.1016/j.jallcom.2014.06.004.

G.E. Delgado, L. Manfredy, and S.A. López-Rivera, Crystal structure of the ternary semiconductor Cu2In14/34/3Se8 determined by X-ray powder diffraction data. Powder Diffr. 33 (2018) 237-241. https://doi.org/10.1017/S0885715618000519.

C. Chacón, P. Delgado-Niño, and G.E. Delgado, Synthesis and crystal structure determination of the new olivine-type compound Mn2SnSe4. Rev. Mex. Fís. 66 (2020) 30-34. https://doi.org/10.31349/revmexfis.66.30.

P. Delgado-Niño, C. Chacón, G. Marroquin, and G.E. Delgado, The chalcogenide compound Fe2SnSe4: synthesis and crystal structure analysis by powder x-ray diffraction. Mater. Res. 24 (2021) e20200142. https://doi.org/10.1590/1980-5373-MR-2020-0142.

G.E. Delgado, G. Marin, S.M. Wasim, C. Rincón, and D.P. Singh, Synthesis and crystal structure of the ordered vacancy compound Cu3In5Se9. Orbital, 13 (2021) 236-240. http://dx.doi.org/10.17807/orbital.v13i3.1560.

G.E. Delgado, and M. Quintero, Synthesis and structural characterization using the Rietveld method of the quaternary compound CuAlGeSe4. Rev. Mex. Fís. 68 (2022) 029501. https://doi.org/10.31349/revmexfis.68.020501.

T. Roisnel, and J. Rodríguez-Carvajal, Winplotr: A windows tool for powder diffraction pattern Analysis. Mater. Sci. Forum, 378-381 (2001) 118-123. https://doi.org/10.4028/www.scientific.net/MSF.378-381.118.

S. Gates-Rector, and T. Blanton, The Powder Diffraction File: A quality materials characterization database. Powder Diffr. 34 (2019) 352-360. https://doi.org/10.1017/S0885715619000812.

A. Boultif, and D. Louër, Powder pattern indexing with the dichotomy method, J. Appl. Cryst. 37 (2004) 724. https://doi.org/10.1107/S0021889804014876.

A.D. Mighell, C.R. Hubbard, J.K. Stalick. NBS’AIDS, National Bureau of Standards, Technical Note 1141, USA (1981).

P.M. de Wolff, A simplified criterion for the reliability of a powder pattern indexing. J. Appl. Cryst. 1 (1968) 108, https://doi.org/10.1107/S002188986800508X.

G.S. Smith and R. L. Snyder. FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing, J. Appl. Cryst. 12 (1979) 60, https://doi.org/10.1107/S002188987901178X.

H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2 (1969) 65, https://doi.org/10.1107/S0021889869006558.

J. Rodríguez-Carvajal, Fullprof, version 8.20, LLB, CEA-CNRS, France, 2025.

A. Liu, X. Chen, Z. Zh.ang, Y. Jiang, and C. Shi, Solid State Comm. 138 (2006) 538-541. https://doi.org/10.1016/j.ssc.2006.04.008.

G. Caglioti, A. Paoletti, and F. P. Ricci, Choice of collimators for a crystal spectrometer for neutron diffraction, Nucl. Instrum. 3 (1958) 223. https://doi.org/10.1016/0369-643X(58)90029-X.

P. Thompson, D. E. Cox, and J. B. Hastings, Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3, J. Appl. Cryst. 20 (1987) 79. https://doi.org/10.1107/S0021889887087090.

R.J. Hill, and C.J. Howard, Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. J. Appl. Cryst. 20 (1987) 467-474. https://doi.org/10.1107/S0021889887086199.

I.D. Brown, D. Altermatt. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Cryst. B. 41 (1985) 244-247. https://doi.org/10.1107/S0108768185002063.

N.E. Brese, M. O’Keeffe. Bond-valence parameters for solids. Acta Cryst. B. 47 (1991) 192-197. https://doi.org/10.1107/S0108768190011041.

E.R Gil, Ternary semiconducting compounds with chalcopyrite-type structure. phys. stat. sol.(a), 70 (1982) 519-523. https://doi.org/10.1002/pssa.2210700220.

R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A 32 (1976) 751, https://doi.org/10.1107/S0567739476001551.

K.S. Knight, The crystal structures of CuInSe2 and CuInTe2. Mater. Res. Bull. 27 (1992) 161-167. https://doi.org/10.1016/0025-5408(92)90209-I.

G.E. Delgado et al., Structural refinement of the ternary chalcogenide compound Cu2GeTe3 by X-ray powder diffraction. phys. stat. sol. (a), 201, 2900-2904 (2004). https://doi.org/10.1002/pssa.200406850.

G.E. Delgado, A.J. Mora, G. Marcano, C. Rincón, Crystal structure refinement of the ternary compound Cu2SnTe3 by X-ray powder diffraction. Cryst. Res. Technol. 43 (2008) 433-437. https://doi.org/10.1002/crat.200711049.

G. E. Delgado et al., Synthesis and crystallographic study of the ternary semiconductor compound Fe2GeTe4, Chalcogenide Lett. 7(2) (2010) 133-138. https://chalcogen.ro/133_Delgado.pdf.

L. Nieves, G. E. Delgado, G. Marcano, S. A. López, and C. Rincón, Structural characterization of the high-temperature modification of the Cu2ZnGeTe4 quaternary semiconductor compound. phys. stat. sol. (b), 253 (2016) 1195-1201. https://doi.org/10.1002/pssb.201552782.

G. E. Delgado, E. Guedez, G. Sánchez-Pérez, C. Rincón, and G. Marroquin, Synthesis, structural study, and magnetic susceptibility of the chalcogenide olivine compound Mn2SiTe4. Rev. Matéria, 24 (2019) e1232900. https://www.jcchems.com/index.php/JCCHEMS/article/view/2609.

G.E. Delgado et al., Crystal structure and powder X-ray diffraction data of the super-paramagnetic compound CuFeInTe3. Mex. Fís. 67 (2021) 305-311. https://doi.org/10.31349/revmexfis.67.305.

D. Zagorac, H. Müller, S. Ruehl, J. Zagorac, and S. Rehme, Recent developments in the Inorganic Crystal Structure Database: theoretical crystal structure data and related features. J. Appl. Cryst., 52 (2019) 918-925. https://doi.org/10.1107/S160057671900997X.

Downloads

Published

2026-01-01

How to Cite

[1]
G. E. Delgado, E. Quintero, P. Delgado-Niño, R. Guillen-Guillen, and G. Márquez, “Synthesis, differential thermal analysis, and crystal structure of the quaternary chalcogenide compound Cu2FeGeTe4”, Rev. Mex. Fís., vol. 72, no. 1 Jan-Feb, pp. 010503 1–, Jan. 2026.