Performance enhancement of SnSb₂Se₃S solar cells through structural and optoelectronic modifications

Authors

  • U.K. Anjali E.G.S. Pillay Engineering College
  • Irshad Ahamed E.G.S. Pillay Engineering College
  • J. Abdul Raashid E.G.S. Pillay Engineering College
  • E. Edward Anand E.G.S. Pillay Engineering College

DOI:

https://doi.org/10.31349/RevMexFis.72.011602

Keywords:

Solar Cells, SCAPS-1D, Optoelectronics, SnSb₂Se₃S

Abstract

This study investigates the optoelectronic properties of SnSb₂Se₃S, a novel material, for the first time, and evaluates its potential as a high-absorption thin-film solar cell absorber. Leveraging its unique nanoscale attributes and potential for Multiple Exciton Generation (MEG), SnSb₂Se₃S is explored for its capacity to enhance light absorption and charge carrier transport, positioning it as a promising candidate for advanced photovoltaic applications. A detailed analysis of Power Conversion Efficiency (PCE) as a function of absorber layer thickness demonstrates a direct correlation, with PCE values increasing from 5.87% at 2500 nm to 5.96% at 3000 nm. The impact of electron affinity on PCE is also examined, revealing an inverse relationship wherein increased electron affinity results in decreased efficiency due to alterations in charge transport dynamics. Furthermore, the temperature dependence of PCE is analyzed, indicating robust stability across a range of operating temperatures. Quantum Efficiency (QE) measurements show a significant response at 1240 nm, confirming effective infrared absorption. The carrier generation rate is evaluated, confirming efficient photon-to-electron conversion within the absorber layer. These results provide critical insights into the viability of SnSb₂Se₃S as an alternative absorber material for next-generation solar cells, setting the stage for subsequent experimental validation and device optimization.

References

Q. Hassan et al., The renewable energy role in the global energy Transformations, 48 (2024) 100545, https://doi.org/10.1016/j.ref2024.100545

I. Ahamed et al., Investigation of thermal evaporated SnSe nano structure layer for photovoltaic use: a structural, morphological, and electrical analysis, J Mater Sci: Mater Electron 36 (2025) 224, https://doi.org/10.1007/s10854-025-14299-9

M. Al-Moneef and E. Yousef, Global Oil Demand Outlook: Trends and Implications, Global Oil Demand Outlook: Trends and Implications. Oil & Gas Journal 123 (2025) 45

E. Graham, N. Fulghum, and K. Altieri, Global Electricity Review 2025 (ember-energy.org, 2025), https://ember-energy.org/app/uploads/2025/04/Report-Global-Electricity-Review-2025.pdf

Q. Hassan et al., The renewable energy role in the global energy Transformations, Renewable Energy Focus 48 (2024) 100545, https://doi.org/10.1016/j.ref.2024.100545

L. Yao et al., Evaluating the feasibility of concentrated solar power as a replacement for coal-fired power in China: A comprehensive comparative analysis, Applied Energy 377 (2025) 124396, https://doi.org/10.1016/j.apenergy.2024.124396

N. S. Seroka, R. Taziwa, and L. Khotseng, Solar energy materials-evolution and Niche applications: A literature review, Materials 15 (2022) 5338, https://doi.org/10.3390/ma15155338

M. Pavlik et al., Analysis and evaluation of photovoltaic cell defects and their impact on electricity generation, Energies 16 (2023) 2576, https://doi.org/10.3390/en16062576

G. Jarosz, R. Marczy’nski, and R. Signerski, Effect of band gap on power conversion efficiency of single-junction semiconductor photovoltaic cells under white light phosphor-based LED, illumination 107 (2019) 104812, https://doi.org/10.1016/j.mssp.2019.104812

P. J. S. Babu et al., Studies on copper indium selenide/Zinc sulphide semiconductor quantum dots for solar cell applications, Chalcogenide Letters. 18 (2021) 701, https://chalcogen.ro

S. M. Sivasankar, C. de Oliveira Amorim, and A. F. da Cunha, Progress in Thin-Film Photovoltaics: A Review of Key Strategies to Enhance the Efficiency of CIGS, CdTe and CZTSSe Solar Cells, J. Compos. Sci. 9 (2025) 143, https://doi.org/10.3390/jcs9030143

J. Liu et al., Evolutionary manufacturing approaches for advancing flexible perovskite solar cells, Joule 8 (2024) 944, https://doi.org/10.1016/j.joule.2024.02.025

A. R. Smith et al., Thin-Film Technologies for Sustainable Building-Integrated Photovoltaics, Energies 17 (2024) 6363, https://doi.org/10.3390/en17246363

K. N’Konou, S. Y. Kim, and N. Y. Doumon, Multicomponent organic blend systems: A review of quaternary organic photovoltaics, Carbon & Energy 6 (2024) e579, https://doi.org/10.1002/cey2.579

A. K. Yadav et al., Cu2SrSnS4 absorber based efficient heterostructure single junction solar cell: a hybrid- DFT and macroscopic simulation studies, Appl. Phys. A 130 (2024), https://doi.org/10.1007/s00339-023-07184-x

X. Wang et al., Band Versus: Charge Transport in Antimony Chalcogenides, ACS Energy Lett. 7 (2022) 2954, https://doi.org/10.48550/arXiv.2206.15389

U. A. Shah et al., A deep dive into Cu2ZnSnS4 (CZTS) Solar cells: A review of exploring roadblocks, Breakthroughs & shaping the future, Small 20 (2024) 2310584, https://doi.org/10.1002/smll.202310584

M. I. Ahamed et al., Modelling of Cu2SnSeS chalcogenide quantum dots for optoelectronic applications, Journal of optoelectronics and advanced materials 25 (2023) 169

P. Kumar et al., Progress in Sb2Se3 and Sb2S3-Based Solar Cells: SCAPS-1D and Experimental Investigations, Chemistry Select 10 (2025) e202404430, https://doi.org/10.1002/slct.202404430

K. K. M. Mamta and V. N. Singh, Sb2Se3 as an HTL for Mo/Sb2Se3/Cs2TiF6/TiO2 solar structure: performance evaluation with SCAPS-1D, Heliyon 8 (2022) e10925, https://doi.org/10.1016/j.heliyon.2022.e10925

G. Chen et al., Perspective of Environmentally friendly antimony Selenide-based solar cell, Appl. Phys. Lett. 125 (2024) 200502, https://doi.org/10.1063/5.0214349

M. Wang et al., Suppressing material loss in the visible and near-infrared range for functional Nano photonics using bandgap engineering, Nat Commun. 11 (2020) 5055, https://doi.org/10.1038/s41467-020-18793-y

T. Taskesen et al., Steep sulfur gradient in CZTSSe solar cells by H2S-assisted rapid surface sulfurization, RSC Adv. 11 (2021) 12687, https://doi.org/10.1039/D1RA00494H

S. Mohammadi, N. Kaur, and D. R. Radu, Nanoscale Cu2ZnSnSxSe(4-x) (CZTS/Se) for Sustainable Solutions in Renewable Energy, Sensing, and Nano medicine, Crystals 14 (2024) 479, https://doi.org/10.3390/cryst14050479

M. Burgelman, P. Nollet, and S. Degrave, Modelling polycrystalline semiconductor solar cells, Thin Solid Films 361-362 (2000) 527, https://doi.org/10.1016/S0040-6090(99)00825-1

M. Rahaman et al., Numerical optimization of lead-based and lead-free absorber materials for perovskite solar cell (PSC) architectures: A SCAPS-1D simulation, AIP Advances 14 (2024), https://doi.org/10.1063/5.0217486

T. Sekou et al., Comparative Analysis Using SCAPS-1d Software on the stability and toxicity of the Perovskites FAPbI 3 , and FASI 3, Advances Energy Conversion Materials 308 (2024), https://doi.org/10.37256/aecm.5220245549

M. Burgelman and S. D. P Nollet, Modelling polycrystalline semiconductor solar cells, Thin Solid Films 361-362 (2000) 527, https://doi.org/10.1016/S0040-6090(99)00825-1

P. G. D. K. Ngue et al., Investigation of the Performance of a Sb2S3-Based Solar Cell with a Hybrid Electron Transport Layer (h-ETL): A Simulation Approach Using SCAPS1D Software, International Journal of Photoenergy 2024 (2024) 5188636, https://doi.org/10.1155/2024/5188636

A. El Khalfi et al., Dual-Absorber Solar Cell Design and Simulation Based on Sb2Se3 and CZTGSe for High-Efficiency Solar Cells, Langmuir 40 (2024) 20352, https://doi.org/10.1021/acs.langmuir.4c01472

T. Ahamed et al., Numerical Modelling of Buffer Layers for Advancing CZTSSe Solar Cell Efficiency (2025), URL https://arxiv.org/abs/2501.06681

S. Wang et al., Corrigendum to Enhanced performance of TiO2-based perovskite solar cells with Ru-doped TiO2 electron transport layer Sol, Energy 169 (2018) 335, https://doi.org/10.1016/j.solener.2020.06.082

S. Dursun, J-V and C-V characteristic of CdS/CdTe solar cell modelled by SCAPS-1D program (2022), https://doi.org/10.5281/zenodo.7472259

A. Shahib et al., Modelling of Highly Efficient Copper Zinc Tin Sulphide (CZTS) Solar cell for Performance Improvement (2019), https://dx.doi.org/10.1109/ICECCE47252.2019.8940765

M. Noman, A. D. Khan, and S. T. Jan, Influence of Absorber Layer Thickness and Band Gap Tuning on the Optical and Electrical Properties of Semi-transparent Flexible Perovskites Solar Cells (GREEN ENERGY AND TECHNOLOGY, 2024), https://doi.org/10.1007/978-3-031-49787-2_3

M. Saladina and C. Deibel, Transport resistance strikes back: unveiling its impact on fill factor losses in organic solar cells (2024), https://doi.org/10.48550/arXiv.2404.06190

M. S. Reza et al., Design and Optimization of High- Performance Novel RbPbBr3-Based Solar Cells with Wide- BandGap S-Chalcogenide. Electron Transport Layers (ETLs), ACS Omega 9 (2024) 19824, https://doi.org/10.1021/acsomega.3c08285

Y. Osman et al., Optimized CIGS-Based Solar Cell Towardsan Efficient solar cell: Impact of layers Thickness and doping (Optical and Quantum Electronics, 2021), https://link.springer.com/article/10.1007/s11082-021-02873-4

H. S. Das et al., Effect of Absorber Layer Thickness on the Performance of the Perovskite Solar Cell in Solar Cell Capacitance Simulator-1D (SCAPS-1D), ES Gen. 6 (2024), https://dx.doi.org/10.30919/esg1292

Y. Cho et al., Temperature dependence on bandgap of semiconductor photo catalysts, J. Chem. Phys. 152 (2020) 231101, https://doi.org/10.1063/5.0012330

L. M. Shaker et al., Examining the influence of thermal effects on solar cells: a comprehensive review, Sustainable Energy Research 11 (2024) 6, https://doi.org/10.1186/s40807-024-00100-8

O. K. Segbefia, Temperature profiles of field-aged photovoltaic modules affected by optical degradation, Heliyon 9 (2023) e19566, https://doi.org/10.1016/j.heliyon.2023.e19566

L. M. Shaker et al., Examining the influence of thermal effects on solar cells: a comprehensive review, Sustainable Energy Res. 11 (2024), https://doi.org/10.1186/s40807-024-00100-8

A. Talukdar et al., Unveiling the role of band offset in inorganic RbGeI3-based perovskites solar cells: a numerical study in SCAPS-1D, Indian Journal of Physics 98 (2024) 3913, https://link.springer.com/article/10.1007/s12648-024-03158-8

D. Valenta et al., The Energy Level Alignment at the Buffer/Cu (In, Ga) Se2 Thin-Film Solar Cell Interface for CdS and GaOx, Advanced Materials Interfaces 11 (2024) 2301110, https://doi.org/10.1002/admi.202301110

L. M. M. Livingston et al., Impact of Device Design Parameters on Quantum Efficiency of Solar Cells and Revelation of Recombination Mechanism, Optical and Quantum Electronics 57 (2025) 160, https://doi.org/10.1007/s11082-025-08074-7

O. E. Semonin et al., Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell, Science (New York, N.Y.) 334 (2011) 1530, https://pubmed.ncbi.nlm.nih.gov/22174246/

S. R. Sahu et al., Multiple exciton generation in VO2, Phys. Rev. B 108 (2023) 125133, https://doi.org/10.1103/PhysRevB.108.125133

Downloads

Published

2026-01-01

How to Cite

[1]
U.K. Anjali, Irshad Ahamed, J. Abdul Raashid, and E. Edward Anand, “Performance enhancement of SnSb₂Se₃S solar cells through structural and optoelectronic modifications”, Rev. Mex. Fís., vol. 72, no. 1 Jan-Feb, pp. 011602 1–, Jan. 2026.