Electric current from Schwinger’s time-ordered propagator

Authors

  • C. Villavicencio Departamento de Ciencias Básicas, Universidad del Bio Bio

DOI:

https://doi.org/10.31349/RevMexFis.72.010801

Keywords:

Schwinger’s proper-time method; external electromagnetic field; electric conductivity

Abstract

The quasistatic electric current density of fermions in the presence of an external electric field is determined through the utilization of a time-ordered Schwinger propagator. The study encompasses the necessary conditions for establishing a well-defined time-ordered propagator within the Schwinger formalism, specifically concentrating on constant and uniform electromagnetic fields. Within this theoretical framework, a chemical potential is introduced, resulting in non-zero values for the electric current and charge number density. Consequently, the dependence of electric conductivity on the strength of the electric field and the charge number density is investigated.

References

J. S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664, https://doi.org/10.1103/PhysRev.82.664

T.-K. Chyi et al., The weak field expansion for processes in a homogeneous background magnetic field, Phys. Rev. D 62 (2000) 105014, https://doi.org/10.1103/PhysRevD.62.105014

D. Kharzeev et al., eds., Strongly Interacting Matter in Magnetic Fields (Springer, 2013), https://doi.org/10.1007/978-3-642-37305-3

F. Sauter, Uber das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs, Z. Phys. 69 (1931) 742, https://doi.org/10.1007/BF01339461

A. Bzdak and V. Skokov, Event-by-event fluctuations of magnetic and electric fields in heavy ion collisions, Phys. Lett. B 710 (2012) 171, https://doi.org/10.1016/j.physletb.2012.02.065

W.-T. Deng and X.-G. Huang, Event-by-event generation of electromagnetic fields in heavy-ion collisions, Phys. Rev. C 85 (2012) 044907, https://doi.org/10.1103/PhysRevC.85.044907

W. R. Tavares and S. S. Avancini, Schwinger mechanism in the SU(3) Nambu-Jona-Lasinio model with an electric field, Phys. Rev. D 97 (2018) 094001, https://doi.org/10.1103/PhysRevD.97.094001

M. Loewe and R. Zamora, Renormalons in a scalar selfinteracting theory: Thermal, thermomagnetic, and thermoelectric corrections for all values of the temperature, Phys. Rev. D 105 (2022) 076011, https://doi.org/10.1103/PhysRevD.105.076011

G. Endrödi and G. Markó, On electric fields in hot QCD: perturbation theory, JHEP 12 (2022) 015, https://doi.org/10.1007/JHEP12(2022)015

M. Loewe, D. Valenzuela, and R. Zamora, Effective potential and mass behavior of a self-interacting scalar field theory due to thermal and external electric and magnetic fields effects, The Eur. Phys. J. A 59 (2023) 184, https://doi.org/10.1140/epja/s10050-023-01097-2

W. R. Tavares, S. S. Avancini, and R. L. S. Farias, Quark matter under strong electric fields in the Linear Sigma Model coupled with quarks, Phys. Rev. D 108 (2023) 016017, https://doi.org/10.1103/PhysRevD.108.016017

G. Cao and X.-G. Huang, Chiral phase transition and Schwinger mechanism in a pure electric field, Phys. Rev. D 93 (2016) 016007, https://doi.org/10.1103/PhysRevD.93.016007

W. R. Tavares, R. L. S. Farias, and S. S. Avancini, Deconfinement and chiral phase transitions in quark matter with a strong electric field, Phys. Rev. D 101 (2020) 016017, https://doi.org/10.1103/PhysRevD.101.016017

A. Ahmad, Chiral symmetry restoration and deconfinement in the contact interaction model of quarks with parallel electric and magnetic fields, Chin. Phys. C 45 (2021) 073109, https://doi.org/10.1088/1674-1137/abfb5f

M. Loewe, D. Valenzuela, and R. Zamora, Catalysis and inverse electric catalysis in a scalar theory, Phys. Rev. D 105 (2022) 036017, https://doi.org/10.1103/PhysRevD.105.036017

A.Ahmad and A. Farooq, Schwinger Pair Production in QCD from Flavor-Dependent Contact Interaction Model of Quarks, Braz. J. Phys. 54 (2024) 212, https://doi.org/10.1007/s13538-024-01581-0

S. Pu, S.-Y. Wu, and D.-L. Yang, Chiral Hall effect and chiral electric waves, Phys. Rev. D 91 (2015) 025011, https://doi.org/10.1103/PhysRevD.91.025011

Y. Jiang, X.-G. Huang, and J. Liao, Chiral electric separation effect in the quark-gluon plasma, Phys. Rev. D 91 (2015) 045001, https://doi.org/10.1103/PhysRevD.91.045001

X.-G. Huang, Electromagnetic fields and anomalous transports in heavy-ion collisions - A pedagogical review, Rept. Prog. Phys. 79 (2016) 076302, https://doi.org/10.1088/0034-4885/79/7/076302

P. Copinger, K. Fukushima, and S. Pu, Axial Ward identity and the Schwinger mechanism - Applications to the real-time chiral magnetic effect and condensates, Phys. Rev. Lett. 121 (2018) 261602, https://doi.org/10.1103/PhysRevLett.121.261602

G. Cao, The electromagnetic field effects in in-out and in-in formalisms, Phys. Lett. B 806 (2020) 135477, https://doi.org/10.1016/j.physletb.2020.135477

G. Murguia, et al., The Electron Propagator in External Electromagnetic Fields in Lower Dimensions, Am. J. Phys. 78 (2010) 700, https://doi.org/10.1119/1.3311656

A. Ayala, et al., Chiral and Parity Symmetry Breaking for Planar Fermions: Effects of a Heat Bath and Uniform External Magnetic Field, Phys. Rev. D 82 (2010) 056011, https://doi.org/10.1103/PhysRevD.82.056011

D. Dudal, et al., Half-integer anomalous currents in 2D materials from a QFT viewpoint, Sci. Rep. 12 (2022) 5439, https://doi.org/10.1038/s41598-022-09483-4

N. C. Tsamis and R. P. Woodard, Schwinger’s propagator is only a Green’s function, Class. Quant. Grav. 18 (2001) 83, https://doi.org/10.1088/0264-9381/18/1/306

E. V. Shuryak, Quantum Chromodynamics and the Theory of Superdense Matter, Phys. Rept. 61 (1980) 71, https://doi.org/10.1016/0370-1573(80)90105-2

A. Chodos, K. Everding, and D. A. Owen, QED with a chemical potential: The case of a constant magnetic field, Phys. Rev. D 42 (1990) 2881, https://doi.org/10.1103/PhysRevD.42.2881

A. J. Mizher, A. Raya, and C. Villavicencio, Electric current generation in distorted graphene, Int. J. Mod. Phys. B 30 (2015) 1550257, https://doi.org/10.1142/S0217979215502574

A. J. Mizher et al., Aspects of the pseudo Chiral Magnetic Effect in 2D Weyl-Dirac Matter, Eur. Phys. J. C 78 (2018) 912, https://doi.org/10.1140/epjc/s10052-018-6380-1

M. Schwartz, Quantum Field Theory and the Standard Model, Quantum Field Theory and the Standard Model (Cambridge University Press, 2014), https://books.google.cl/books?id=HbdEAgAAQBAJ

W. Dittrich and H. Gies, Probing the quantum vacuum. Perturbative effective action approach in quantum electrodynamics and its application, vol. 166 (Springer, 2000), https://doi.org/10.1007/3-540-45585-X

Downloads

Published

2026-01-01

How to Cite

[1]
C. Villavicencio, “Electric current from Schwinger’s time-ordered propagator”, Rev. Mex. Fís., vol. 72, no. 1 Jan-Feb, pp. 010801 1–, Jan. 2026.