A numerical study on regularization and key rheological parameters in the evolution of rigid zones in Herschel–Bulkley fluids
DOI:
https://doi.org/10.31349/RevMexFis.72.011702Keywords:
Papanastasiou regularization parameter, Critical shear rate, , Rigid zones, Herschel- Bulkley fluid, Unsteady flow, Consistency factor, Pressure, Power-law indexAbstract
Regulating the formation of rigid zones in viscoplastic fluids is essential for accurate numerical modeling and practical applications. This paper presents a numerical study on the control and minimization of rigid zones in Herschel–Bulkley fluids during flow at the yield stress threshold within a confined square domain. The Papanastasiou regularization method is employed to ensure a smooth transition between fluid and rigid-like zones. This study systematically analyzes the influence of key rheological parameters and the regularization approach on the suppression and reduction of these zones. The influence of the regularization parameter on rigid zone formation during flow is investigated, along with the effect of the critical shear rate for different values of this parameter. Additionally, the impact of inlet pressure on the rigid zone area is examined, followed by an in-depth analysis of its effect for various critical shear rate values to explore their combined influence. Furthermore, the study explores the influence of the consistency factor and the power-law index on rigid zones during flow. The findings highlight optimal parameter selection strategies to suppress or minimize rigid zones at the yield stress threshold, ensuring improved numerical accuracy in viscoplastic fluid simulations.
References
R. P. Chhabra, Non-Newtonian fluids: An introduction, In J. Krishnan, A. Deshpande, and P. Kumar, eds., Rheology of Complex Fluids, chap. 1 (Springer, New York, NY, 2010)
L. Min, E. Erwin, and H. M. Jennings, Colloid stability of clay suspensions and its role in the formation of kaolinite gels, Journal of Materials Science 29 (1994) 1374
R. R. Huilgol and Z. You, Application of the augmented Lagrangian method to steady pipe flows of Bingham, Casson and Herschel-Bulkley fluids, Journal of Non-Newtonian Fluid Mechanics 128 (2005) 126
S. K. Vajravelu et al., Mathematical model for a HerschelBulkley fluid flow in an elastic tube, Central European Journal of Physics 9 (2011) 1357
P. Saramito, Quelques resultats recents en calcul numerique desecoulements de fluides non-newtoniens: visco elasticite et viscoplasticite (2007)
E. Gryparis and G. C. Georgiou, Torsional parallel plate flow of Herschel-Bulkley fluids with wall slip, Physics of Fluids 36 (2024) 043122
T. C. Papanastasiou, Flows of materials with yield, Journal of Rheology 31 (1987) 385
M. Bercovier and M. Engelman, A finite-element method for incompressible non-Newtonian flows, Journal of Computational Physics 36 (1980) 313
R. I. Tanner and J. F. Milthorpe, Numerical simulation of the flow of fluids with yield stress, In C. Taylor, J. A. Johnson, and W. R. Smith, eds., Numerical Methods in Laminar and Turbulent Flow, pp. 680-690 (Pineridge Press, Swansea, UK, 1983)
J. D. Dent and T. E. Lang, A Biviscous modified Bingham model of snow avalanche motion, Annals of Glaciology 4 (1983)
H. Zhu, Y. D. Kim, and D. Dekee, Non-Newtonian fluids with a yield stress, Journal of Non-Newtonian Fluid Mechanics 129 (2005) 177
M. A. Hassan, M. Patnak, and M. K. Khan, Rayleigh- Benard Convection in Herschel-Bulkley fluid, Journal of Non- Newtonian Fluid Mechanics 226 (2015) 32
S. Mossaz, P. Jay, and A. Magnin, Criteria for the appearance of recirculating and non-stationary regimes behind a cylinder in a viscoplastic fluid, Journal of Non-Newtonian Fluid Mechanics 165 (2010) 1525
D. L. Tokpavi, A. Magnin, and P. Jay, Very slow flow of Bingham viscoplastic fluid around a circular cylinder, Journal of Non-Newtonian Fluid Mechanics 154 (2008) 65
A. Syrakos, G. C. Georgiou, and A. N. Alexandrou, Thixotropic flow past a cylinder, Journal of Non-Newtonian Fluid Mechanics 220 (2015) 44
T. Zisis and E. Mitsoulis, Viscoplastic flow around a cylinder confined in a channel, Journal of Non-Newtonian Fluid Mechanics 105 (2002) 1
D. L. Tokpavi, A. Magnin, and P. Jay, Very slow flow of Bingham viscoplastic fluid around a circular cylinder, Journal of Non-Newtonian Fluid Mechanics 154 (2008) 65
G. R. Burgos and A. N. Alexandrou, Flow development of Herschel-Bulkley fluids in a sudden three-dimensional square expansion, Journal of Rheology 43 (1999) 485
E. Mitsoulis, Numerical simulations of complex yield-stress fluid flows, Chemical Engineering Science 59 (2004) 789
E. Mitsoulis, Numerical simulation of calendering viscoplastic fluids, Journal of Non-Newtonian Fluid Mechanics 154 (2008) 77
A. A. Gavrilov, K. A. Finnikov, and E. V. Podryabinkin, Modeling of steady Herschel-Bulkley fluid flow over a sphere, Journal of Engineering Thermophysics 26 (2017) 197
S. W. Jeong, Determining the viscosity and yield surface of marine sediments using modified Bingham models, Journal of Geosciences 17 (2013) 241
S. Patel and R. Chhabra, Steady flow of Bingham plastic fluids past an elliptical cylinder, Journal of Non-Newtonian Fluid Mechanics 202 (2013) 32
Y. Lin et al., Concentration dependence of yield stress and dynamic moduli of kaolinite suspensions, Langmuir 31 (2015) 4791
S. Mossaz, P. Jay, and A. Magnin, Rheological properties of polymer gels under shear, Journal of Non-Newtonian Fluid Mechanics 189-190 (2012) 40
H. Taibi and F. Messelmi, Effect of yield stress on the behavior of rigid zones during the laminar flow of Herschel-Bulkley fluid, Alexandria Engineering Journal 57 (2017) 1109
P. Saramito, A new elastoviscoplastic model based on the Herschel-Bulkley viscoplastic model, Journal of Non- Newtonian Fluid Mechanics 158 (2009) 154
E. Moreno, A. Larese, and M. Cervera, Modelling of Bingham and Herschel-Bulkley flows with mixed P1/P1 finite elements stabilized with orthogonal subgrid scale, Journal of Non- Newtonian Fluid Mechanics 228 (2016) 1
R. B. Spelay, Solids Transport in Laminar, Open Channel Flow of Non-Newtonian Slurries, Ph.D. thesis, University of Saskatchewan, Department of Chemical Engineering, Saskatoon, Saskatchewan (2007)
F. Messelmi, Effects of the yield limit on the behavior of Herschel-Bulkley fluid, Nonlinear Science Letters A 2 (2011) 137
E. Mitsoulis, Flows of viscoplastic materials: models and computations, Rheology Reviews (2007) 135
D. Dent and T. E. Lang, A Biviscous modified Bingham model of snow avalanche motion, Annals of Glaciology 4 (1983)
H. Zhu, Y. D. Kim, and D. Dekee, Non-Newtonian fluids with a yield stress, J. Non-Newtonian Fluid Mechanics 129 (2005) 177
E. Moreno and M. Cervera, Elementos finitos mixtos estabilizados para flujos confinados de Bingham y de Herschel- Bulkley. Parte I: Formulacion, ´ Revista Internacional de Metodos ´ Numericos para Calculo y Diseño en Ingenierıa 32 (2016) 100
C. M. Bui and T. X. Ho, Numerical study of an unsteady flow of thixotropic liquids past a Cylinder, AIP Advances 9 (2019) 115002
J. Bleyer et al., Efficient numerical computations of yield stress fluid flows using second-order cone programming, Computer Methods in Applied Mechanics and Engineering 283 (2015) 599
M. Ali et al., A robust deep learning approach for photovoltaic power forecasting based on feature selection and variational mode decomposition, Journal of the Nigerian Society of Physical Sciences (2025) 2795
M. S. Ouahabi et al., Real-Time Sensor Fault Tolerant Control of DC-DC Converters in DC Microgrids Using a Switching Unknown Input Observer, IEEE Access (2023)
R. Khelifi et al., Short-Term PV Power Forecasting Using a Hybrid TVF-EMD-ELM Strategy, International Transactions on Electrical Energy Systems 2023 (2023) 6413716
A. Rabehi et al., Accurate parameter estimation of Au/GaN/GaAs schottky diode model using grey wolf optimization, Rev. Mex. F´ıs. 70 (2024) 021004
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 M. Elalem, F. Messelmi, H. Taibi, A. Rabehi, A. Douara, M, Benghanem

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
