Optimizing energy conversion in a PV-TGS (mSi–Bi₂Te₃) using numerical simulation of semiconductors materials
DOI:
https://doi.org/10.31349/RevMexFis.72.011002Keywords:
Photovoltaic-Thermoelectric Generation Systems, computer simulation, energy transfer, thermoelectric generators, solar hybrid systemsAbstract
A numerical simulation model based on the energy transfer and conversion by the semiconductor materials of a Photovoltaic-Thermoelectric Generation System (PV-TGS) was developed to determine its theoretical power. The model yielded results that differed from those previously reported by other authors for PV panels and cells by a range of -0.017% to +1.74%. In thermoelectric production, the results deviated by a range of -2.27% to -2.80%. The model was formulated based on the constitutive equations of the phenomena inherent to the photovoltaic generation of a monocrystalline silicon PV panel (mSi) and the thermoelectric generation of bismuth telluride (Bi2Te3) Thermoelectric Generators (TEG). The primary variables of interest were irradiance (G), panel operating temperature (TPPV), and the cold section of the TEG (Tc), as well as the generated electrical power (P). The research outcomes enabled the identification of the optimal number of TEGs for the design of a PV-TGS. This determination was derived by considering the temperature differential between the TPPV and Tc sections, as well as the generation efficiency of PV-TGS as a function of incident radiation. Consequently, a pair of equations was formulated that establish a direct correlation between the thermoelectric generation rate and the desired output power.
References
R. Sangi, M. Amidpour, and B. Hosseinizadeh, Modeling and numerical simulation of solar chimney power plants, Solar Energy, 85 (2011) 829, https://doi.org/10.1016/j.solener.2011.01.011
A. Starowicz, P. Rusanowska, and M. Zielinski, Photovoltaic cell - the history of invention - review, 2023, Mineral and Energy Economy Research Institute of the Polish Academy of Sciences. https://doi.org/10.33223/epj/161290
W. Shockley and H. J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells, J Appl Phys, 32 (1961) 510, https://doi.org/10.1063/1.1736034
S. S. Indira, C. A. Vaithilingam, and R. Sivasubramanian, Performance Evaluation of a Hybrid Photovoltaic/Thermoelectric Generator System under Non-Tracking and Tracking Condition, 14th EURECA 2020 - International Engineering and Computing Research Conference “Shaping the Future through Multidisciplinary Research”, Selangor, Malaysia, 2021, p. 15, https://doi.org/10.1051/matecconf/202133502009
M. Asvad, M. Gorji, and A. Mahdavi, Performance analysis of a solar module with different reflectors and cooling flow fields, Appl Therm Eng, 219 (2023) 119469, https://doi.org/10.1016/j.applthermaleng.2022.119469
D. F. Hernandez et al., Computational Simulation in Solar Energy: Effect of Passive Cooling in the Generation of Photovoltaic Cells in Pachuca de Soto, Mexico, Revista de Gestao Social e Ambiental, 18 (2024) e09793, https://doi.org/10.24857/rgsa.v18n11-263
R. Baccoli et al., A comprehensive optimization model for flat solar collector coupled with a flat booster bottom reflector based on an exact finite length simulation model, Energy Convers Manag, 164 (2018) 482, https://doi.org/10.1016/j.enconman.2018.02.091
D. Fuentes Hernandez, M. Vargas Ramırez, F. Legorreta Garcıa, and E. A. Chavez Urbiola, Simulacion computacional de generadores termoelectricos de telururo de bismuto, (2022). https://www.uaeh.edu.mx/xv-encuentro-investigacion-aactym/memorias/docs/art20.pdf
M. del R. Morales Dıaz, E. Rosendo Andres, R. Galeazzi Isasmendi, and H. Perez Ladron de Guevara, Modelado y simulacion de celdas solares transparentes a base de la heterounion n-TiO2/p-NiO., Benemerita Universidad Autonoma de Puebla, Puebla de Zaragoza, Mexico, (2021). https://repositorioinstitucional.buap.mx/server/api/core/bitstreams/a32c096a-596b-48db-8500-a9b2d07391fc/content
D. Fuentes-Hernandez, R. Perez-Vite, F. Legorreta-Garcıa, M. Vargas-Ramırez, and E. A. Chavez-Urbiola, Simulacion computacional del desempeño de un sistema fotovoltaico acoplando generadores termoelectricos y reflectores difusos de refuerzo, Padi Boletın Cientıfico de Ciencias Basicas e Ingenierıas del ICBI, 8 (2020) 128, https://doi.org/10.29057/icbi.v8iespecial.6335
R. D. Judkoff, Validation of Building Energy Analysis Simulation Programs at the Solar Energy Research Institute, Energy Build, 10 (1988) 221, https://doi.org/10.1016/0378-7788(88)90008-4
J. A. Gow and C. D. Manning, Development of a model for photovoltaic arrays suitable for use in simulation studies of solar energy conversion systems, 1996 Sixth International Conference on Power Electronics and Variable Speed Drives (Conf. Publ. No. 429), Nottingham, UK, 1996, pp. 69-74, https://doi.org/10.1049/cp:19960890
R. M. da Silva and J. L. M. Fernandes, Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab, Solar Energy, 84 (2010) 1985, https://doi.org/10.1016/j.solener.2010.10.004
C. Qi and Z. Ming, Photovoltaic Module Simulink Model for a Stand-alone PV System, Phys Procedia, 24 (2012) 94, https://doi.org/10.1016/j.phpro.2012.02.015
E. E. Granda-Gutierrez, J. C. Dıaz-Guillen, M. A. Jimenez, and M. Osorio, Modelado y Simulacion de Celdas y Paneles Solares, Congr. Int. Ing. Electron. Mem. Electro, Chihuahua, Chih. Mexico, 2013, pp. 17-22, https://doi.org/10. 13140/2.1.4192.8968
A. Abdulameer, A. Al-Khazzar, and A. A. Abood, A comprehensive solar angles simulation and calculation using Matlab, International Journal of Energy and Environment, 6 (2015) 367, https://api.semanticscholar.org/CorpusID:62925818
Y. Bouzelata, E. Kurt, R. Chenni, and N. Altin, Design and simulation of a unified power quality conditioner fed by solar energy, Int J Hydrogen Energy, 40 (2015) 15267, https://doi.org/10.1016/j.ijhydene.2015.02.077
M. Sanchez Fraile and F. Naranjo Vega, Desarrollo de una herramienta para el modelado del comportamiento electrico de celulas solares, degree thesis, Escuela Politecnica Superior, Universidad de Alcala, Alcala de Henares, España (2019)
K. W. Qadir, A simulation study on the effect of size gold nanoparticles on broadband light absorption in dye-sensitised solar cells, Rev. Mex. Fis. 67 (2021) 509, https://doi.org/10.31349/RevMexFis.67.509
M. A. Qasim, N. T. Alwan, S. Praveenkumar, V. I. Velkin, and E. B. Agyekum, A new maximum power point tracking technique for thermoelectric generator modules, Inventions, 6 2021, https://doi.org/10.3390/inventions6040088
M. S. Yagoub and M. Adnane, Numerical study of P3HT-based hybrid solid-state quantum dot solar cellswith CdS quantum dots employing different metal oxides using SCAPS-1D, Rev. Mex. Fis. 70 (2024) 1, https://doi.org/10.31349/RevMexFis.70.061001
K. Ouassoul, A. El Kenz, M. Loulidi, A. Benyoussef, and M. Azzouz, Prediction of the photovoltaic performance of the leadfree layered Ruddlesden-Popper organic-inorganic perovskite (CH3NH3)2GeI4, Rev. Mex. Fis. 70 (2024) 1, https://doi.org/10.31349/revmexfis.70.040502
P. Khatri, N. P. Adhikari, and P. Ghosh, Thermoelectric properties of low thermal conductivity half Heuslers TiXPb (X = Ni, Pd, Pt): A first principles investigation, Comput Mater Sci, 244 (2024) 113250, https://doi.org/10.1016/j.commatsci.2024.113250
Comsol Multiphysics, COMSOL Multiphysics Reference Manual, (1998). Available: www.comsol.com/blogs
COMSOL Multiphysics, Si Solar Cell 1D, 2019. Available: www.comsol.com/trademarks
American Society for Testing and Materials (ASTM), ASTM G173-03: Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37◦ Tilted Surface, West Conshohocken, Pennsylvania, USA, 2021, pp. 20 https://store.astm.org/g0173-03.html
J. F. Shackelford and M. P. Martın, Introduccion a la ciencia de materiales, 6th ed. (Pearson Educacion, S.A., Prentice Hall, Madrid, Spain, 2005), pp. 872
L. Wang and J. Yu, Principles of photocatalysis, in Interface Science and Technology, 35 (2023) 1, https://doi.org/10.1016/B978-0-443-18786-5.00002-0
Solartec, Solartec Energ´ıa Renovable S.A de C.V., (Datasheet, 2019)
The National Laboratory of the Rockies, Reference Air Mass 1.5 Spectra, The American Society for Testing and Materials (ASTM) G-173 spectra represent terrestrial solar spectral irradiance on a surface of specified orientation under one and only one set of specified atmospheric conditions, National Renewable Energy Laboratory (NREL), Denver, Colorado, USA, 2025, https://www.nrel.gov/grid/solar-resource/spectra-am1.5
A. R. West, Solid State Chemistry and its Applications, 2nd ed., ohn Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, United Kingdom, 2014, pp. 382-389
R. Nasrin, M. Hasanuzzaman, and N. A. Rahim, Effect of high irradiation on photovoltaic power and energy, Int. J. Energy Res. 42 (2018) 1115, https://doi.org/10.1002/er.3907
Kryotherm, Specification of Generating Thermoelectric Modules TGM-127-1.4-2.5, 2020
M. A. Green et al., Solar cell efficiency tables (Version 60), Progress in Photovoltaics: Research and Applications, 30 (2022) 687, https://doi.org/10.1002/pip.3595
S. Praveenkumar et al., Experimental assessment of thermoelectric cooling on the efficiency of PV module, International Journal of Renewable Energy Research, 12 (2022) 1670, https://doi.org/10.20508/ijrer.v12i3.13087.g8553
B. R. Utomo, A. Sulistyanto, T. W. B. Riyadi, and A. T. Wijayanta, Enhanced Performance of Combined PhotovoltaicThermoelectric Generator and Heat Sink Panels with a DualAxis Tracking System, Energies, 16 (2023) 6, https://doi.org/10.3390/en16062658
N. Calderon-Henao et al., Numerical-experimental performance assessment of a non-concentrating solar thermoelectric generator (STEG) operating in the Southern Hemisphere, Energies 13 (2020) 10, https://doi.org/10.3390/en13102666
A. M. Alajlan, S. Dang, and Q. Gan, Enhanced nighttime power generation and photovoltaic cooling in photovoltaicthermoelectric hybrid systems, Energy Conversion and Management. 22 (2024) 100580, https://doi.org/10.1016/j.ecmx.2024.100580
Z. He, M. Yang, L. Wang, E. Bao, and H. Zhang, Concentrated photovoltaic thermoelectric hybrid system: An experimental and machine learning study, Engineered Science, 15 (2021) 47, https://doi.org/10.30919/es8d440
N. Rosario, F. Rivera, M. Angel, D. Ramırez, and R. Ramirez Bon, Medicion de la eficiencia energetica de los paneles solares de silicio. Centro de Investigacion en Materiales Avanzados, 2016. https://cimav.repositorioinstitucional.mx/jspui/handle/1004/215
M. A. Khan, B. Ko, E. A. Nyari, S. E. Park, and H. J. Kim, Performance evaluation of photovoltaic solar system with different cooling methods and a Bi-reflector PV system (BRPVS): An experimental study and comparative analysis, Energies, 10 (2017) 6, https://doi.org/10.3390/en10060826
K. Ouassoul, A. El Kenz, M. Loulidi, A. Benyoussef, and M. Azzouz, Prediction of the photovoltaic performance of the leadfree layered Ruddlesden-Popper organic-inorganic perovskite (CH3NH3)2GeI4, Rev. Mex. Fıs. 70 (2024) 1, https://doi.org/10.31349/revmexfis.70.040502
R. G. Ross, Flat-Plate photovoltaic array design optimization, in Photovoltaic Specialists Conference, 14th, San Diego, Calif, Inc. I. Institute of Electrical and Electronics Engineers, Ed., New York: Conference Record, Jan. 1980, pp. 1126-1132
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 D. Fuentes-Hernández; M. Vargas-Ramírez; F. Legorreta-García; E. U. Morales-Cruz, E. A. Chávez-Urbiola, C. Y. Becerra-Mayorga

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
