The Riemann-Silberstein vector in the Dirac algebra
DOI:
https://doi.org/10.31349/RevMexFis.65.65Keywords:
Maxwell equations, Dirac matrices algebra, spinorsAbstract
It is shown that the Riemann-Silberstein vector, defined as ${\bf E} + i{\bf B}$, appears naturally in the $SL(2,C)$ algebraic representation of the electromagnetic field. Accordingly, a compact form of the Maxwell equations is obtained in terms of Dirac matrices, in combination with the null-tetrad formulation of general relativity. The formalism is fully covariant; an explicit form of the covariant derivatives is presented in terms of the Fock coefficients.
Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.