Structural and optical characterization of the crystalline phase transformation of electrospinning TiO2 nanofibres by high-temperatures annealing
DOI:
https://doi.org/10.31349/RevMexFis.65.459Keywords:
Electrospinning technique, semiconductor nanofibres, titanium dioxide, structural properties, Raman spectroscopy, X-ray diffractionAbstract
The electrospinning technique has been used to synthesize TiO2 nanofibres, which by annealing at high temperatures in a wide range achieves the crystal phase transformation of anatase to rutile passing through the anatase+rutile mixed. The investigated temperature range was 0-1000°C. The TiO2 nanofibres chemical stoichiometry and surface morphology were obtained by Scanning Electron Microscopy and Energy Dispersive Spectrometry. The nanofibres diameter was ranged from 137.0 to 115.3 nm in the annealing temperature interval of 0-1000°C. The influence of the annealing temperature on the structure and crystal phase quality of the TiO2crystal has been investigated by X-ray diffraction and Raman scattering. Clear evidence of nanofibres structural transformation from pure anatase to pure rutile structures, including the quasi-amorphous and anatase+rutile mixed phases has been confirmed by Raman scattering. By X-ray diffraction was found that the nanofibres crystalline phases present as preferential growth direction (101) for anatase and (110) for rutile. The Raman spectroscopy exhibits the anomalous behaviour for band broadening and shifting of Raman bands with increasing crystallite size that form the nanofibres. The room-temperature photoluminescence presents radiative bands whose main band redshifts, from 2.56 to 1.32 eV, as the crystalline phase transforms in the investigated annealing temperature range.
Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.