Accurate parameter estimation of Au/GaN/GaAs schottky diode model using grey wolf optimization


  • Abdelaziz Rabehi Djelfa University of Algeria
  • Abdelmalek Douara
  • Abdelhalim Rabehi
  • Hicham Helal
  • Ahmed Memdouh Younsi
  • Mohammed Amrani
  • Ibn E. Abbas
  • E. Comini
  • Zineb Benamara



Schottky diodes, Grey Wolf Optimization, Electrical measurement, Parameter estimation, Gan, GaAs


The Au/GaN/GaAs Schottky diode is a fundamental electronic component with versatile applications. In this study we delve into the parameter estimation of Au/GaN/GaAs Schottky diodes using the Grey Wolf Optimizer (GWO) algorithm. Our research encompasses experimental procedures, mathematical modeling, and optimization techniques to extract critical electrical parameters, including the ideality factor (n), Schottky barrier height (φbn), and series resistance (RS). The primary aim is to enhance our comprehension of the behavior of Au/GaN/GaAs Schottky diodes and showcase the effectiveness of GWO in achieving precise parameter estimates. These diodes, featuring metal-semiconductor junctions, play pivotal roles in electronics, necessitating accurate parameter determination for optimized functionality. The effectiveness of the GWO algorithm was examined through a comparative analysis, employing analytical techniques pioneered by Cheung and Cheung. This study sought to assess the algorithm’s performance and accuracy in parameter estimation for Au/GaN/GaAs Schottky diodes, providing valuable insights into its practical applicability in electronic device characterization and optimization. Keywords: Schottky diodes, Grey Wolf Optimization, Electrical measurement. Parameter estimation, Gan, GaAs


Bhattacharya Pallab, Semiconductor optoelectronic devices, 2end ed. River, NJ, United States: Prentice-Hall, Inc., 1997.

S. M. Sze, Semiconductor Devices: Physics and Technology, vol. 2016.

A. Rabehi et al., “Study of the characteristics current-voltage and capacitance-voltage in nitride GaAs Schottky diode,” The European Physical Journal Applied Physics, vol. 72, no. 1, p. 10102, Oct. 2015, doi: 10.1051/epjap/2015150140.

R. . C. Jaeger, Blalock N. Travis, and Blalock J. Benjamin, Microelectronic circuit design. New York: McGraw-Hill, 1997.

A. H. Kacha et al., “Effects of the GaN layers and the annealing on the electrical properties in the Schottky diodes based on nitrated GaAs,” Superlattices Microstruct, vol. 83, pp. 827–833, Jul. 2015, doi: 10.1016/j.spmi.2015.04.017.

G. A. Salvatore, L. Yin, and F. Dai, “Biodegradable Electronics,” 2023, pp. 1019–1041. doi: 10.1007/978-3-030-79827-7_28.

A. Rabehi et al., “Optimal Estimation of Schottky Diode Parameters Using Advanced Swarm Intelligence Algorithms,” Semiconductors, vol. 54, no. 11, pp. 1398–1405, Nov. 2020, doi: 10.1134/S1063782620110214.

A. Rabehi et al., “Optimal estimation of Schottky diode parameters using a novel optimization algorithm: Equilibrium optimizer,” Superlattices Microstruct, vol. 146, p. 106665, Oct. 2020, doi: 10.1016/j.spmi.2020.106665.

H. Norde, “A modified forward I - V plot for Schottky diodes with high series resistance,” J Appl Phys, vol. 50, no. 7, pp. 5052–5053, Jul. 1979, doi: 10.1063/1.325607.

S. K. Cheung and N. W. Cheung, “Extraction of Schottky diode parameters from forward current-voltage characteristics,” Appl Phys Lett, vol. 49, no. 2, pp. 85–87, Jul. 1986, doi: 10.1063/1.97359.

N. Karaboga, S. Kockanat, and H. Dogan, “Parameter determination of the Schottky barrier diode using by artificial bee colony algorithm,” in 2011 International Symposium on Innovations in Intelligent Systems and Applications, IEEE, Jun. 2011, pp. 6–10. doi: 10.1109/INISTA.2011.5946047.

B. Lakehal, Z. Dibi, N. Lakhdar, A. Dendouga, and A. Benhaya, “Parameter determination of Schottky -barrier diode model using genetic algorithm,” in 2011 International Conference on Communications, Computing and Control Applications (CCCA), IEEE, Mar. 2011, pp. 1–4. doi: 10.1109/CCCA.2011.6031466.

K. Ishaque, Z. Salam, H. Taheri, and A. Shamsudin, “A critical evaluation of EA computational methods for Photovoltaic cell parameter extraction based on two diode model,” Solar Energy, vol. 85, no. 9, pp. 1768–1779, Sep. 2011, doi: 10.1016/j.solener.2011.04.015.

O. Ya. Olikh, “Review and test of methods for determination of the Schottky diode parameters,” J Appl Phys, vol. 118, no. 2, Jul. 2015, doi: 10.1063/1.4926420.

S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Advances in Engineering Software, vol. 69, pp. 46–61, Mar. 2014, doi: 10.1016/j.advengsoft.2013.12.007.

A. Abushawish and A. Jarndal, Hybrid particle swarm optimization < scp > − < /scp >grey wolf optimization based < scp >small-signal< scp > modeling applied to < scp > GaN < /scp > devices, International Journal of RF and Microwave Computer-Aided Engineering, vol. 32, no. 5, May 2022, doi:10.1002/mmce.23081

H. Bencherif, L. Dehimi, F. Pezzimenti, and F. G. Della Corte, Improving the efficiency of a-Si:H/c-Si thin heterojunction solar cells by using both antireflection coating engineering and diffraction grating, Optik (Stuttg), vol. 182, pp. 682-693, Apr. 2019, doi:10.1016/j.ijleo.2019.01.032

H. Dogan, Parameter Estimation of AI/p-Si Schottky Barrier Diode Using Different Meta-Heuristic Optimization Techniques, Symmetry (Basel), vol. 14, no. 11, p. 2389, Nov. 2022, doi:10.3390/sym14112389

L. Bideux, G. Monier, V. Matolin, C. Robert-Goumet, and B. Gruzza, XPS study of the formation of ultrathin GaN film on GaAs(100), Appl Surf Sci, vol. 254, no. 13, pp. 4150-4153, Apr. 2008, doi:10.1016/j.apsusc.2007.12.058

G. Monier et al., Passivation of GaAs(001) surface by the growth of high quality c-GaN ultra-thin film using low power glow discharge nitrogen plasma source, Surf Sci, vol. 606, no. 13-14, pp. 1093-1099, Jul. 2012, doi:10.1016/j.susc.2012.03.00619

C. A. Hernández-Gutiérrez et al., Characterization of n-GaN / p-GaAs NP heterojunctions, Superlattices Microstruct, vol. 136, p. 106298, Dec. 2019, doi:10.1016/j.spmi.2019.106298

S. Suandon, S. Sanorpim, K. Yoodee, and K. Onabe, Effect of growth temperature on polytype transition of GaN from zincblende to wurtzite, Thin Solid Films, vol. 515, no. 10, pp. 4393-4396, Mar. 2007, doi:10.1016/j.tsf.2006.07.109

A. Rabehi et al., Current-Voltage, Capacitance-VoltageTemperature, and DLTS Studies of Ni—6H-SiC Schottky Diode, Semiconductors, vol. 55, no. 4, pp. 446-454, Apr. 2021, doi:10.1134/S1063782621040138

H. Helal et al., A new model of thermionic emission mechanism for non-ideal Schottky contacts and a method of extracting electrical parameters, The European Physical Journal Plus, vol. 135, no. 11, p. 895, Nov. 2020, doi:10.1140/epjp/s13360- 020-00916-5

Rabehi Abdelaziz et al., Modeling the Abnormal Behavior of the 6H-SiC Schottky Diode Using Lambert W Function, JOURNAL OF NANO- AND ELECTRONIC PHYSICS, vol. 14, no. 6, pp. 6032-6036, 2022

H. Helal et al., A study of current-voltage and capacitancevoltage characteristics of Au/n-GaAs and Au/GaN/n-GaAs Schottky diodes in wide temperature range, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 33, no. 4, Jul. 2020, doi:10.1002/jnm.2714

J. H. Werner, Schottky barrier and pn-junctionI/V plots ? Small signal evaluation, Applied Physics A Solids and Surfaces, vol. 47, no. 3, pp. 291-300, Nov. 1988, doi:10.1007/BF00615935

K. Wang and M. Ye, PARAMETER ESTIMATION OF SCHOTTKY-BARRIER DIODE MODEL BY PARTICLE SWARM OPTIMIZATION, International Journal of Modern Physics C, vol. 20, no. 05, pp. 687-699, May 2009, doi:10.1142/S0129183109013911

K. Wang and M. Ye, Parameter determination of Schottkybarrier diode model using differential evolution, Solid State Electron, vol. 53, no. 2, pp. 234-240, Feb. 2009, doi:10.1016/j.sse.2008.11.010

M. Pradhan, P. K. Roy, and T. Pal, Grey wolf optimization applied to economic load dispatch problems, International Journal of Electrical Power & Energy Systems, vol. 83, pp. 325-334, Dec. 2016, doi:10.1016/j.ijepes.2016.04.034

H. DoC¸ §an, Parameter Estimation of AI/p-Si Schottky Barrier Diode Using Different Meta-Heuristic Optimization Techniques, Symmetry (Basel), vol. 14, no. 11, p. 2389, Nov. 2022, doi:10.3390/sym14112389

E. Özavcı, S. Demirezen, U. Aydemir, and S. Altındal, A detailed study on current-voltage characteristics of Au/n-GaAs in wide temperature range, Sens Actuators A Phys, vol. 194, pp. 259-268, May 2013, doi:10.1016/j.sna.2013.02.018




How to Cite

A. Rabehi, “Accurate parameter estimation of Au/GaN/GaAs schottky diode model using grey wolf optimization”, Rev. Mex. Fís., vol. 70, no. 2 Mar-Apr, pp. 021004 1–, Mar. 2024.